If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-36x^2+124x-104=0
a = -36; b = 124; c = -104;
Δ = b2-4ac
Δ = 1242-4·(-36)·(-104)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(124)-20}{2*-36}=\frac{-144}{-72} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(124)+20}{2*-36}=\frac{-104}{-72} =1+4/9 $
| -2+27=t | | x(x-11=0 | | 0=2x²+3x+5 | | k=1(1.5) | | (2x+4)(x+7)=2 | | −3x+7=13 | | 11-17q+20=-15q-9 | | 7(-2u+4)-6u=3 | | 1/6+y=5/6 | | x÷7-3=5 | | 2x+4=10+ | | 1+4n+n=16 | | -21+7n=8(2n+3) | | x-7=-3(3x+1)/5 | | 11x-37=9x | | -3(3v-2)+7v=7+2(2v-5) | | (3+5)=(10x-7) | | (5+x)5=50 | | 10x÷2=30 | | 9/6=x/54 | | |−2x+8|=20 | | 4(4+2p)=2(4p+8) | | 10d+2=-108 | | 2(n-8)=-5 | | 0.4p+1.4=3.3 | | Y=15x+-40 | | (5+x)5=30 | | -10j+17=-11j | | 9(h+5)=117 | | 5(2t+4)=70 | | 4(x-7)+2=26 | | 4.49+.10x=16.99 |